Conjectures on hidden Onsager algebra symmetries in interacting quantum lattice models

نویسندگان

چکیده

We conjecture the existence of hidden Onsager algebra symmetries in two interacting quantum integrable lattice models, i.e. spin-1/2 XXZ model and spin-1 Zamolodchikov-Fateev at arbitrary root unity values anisotropy. The conjectures relate generators to conserved charges obtained from semi-cyclic transfer matrices. are motivated by examples which XX U(1)-invariant clock model. A novel construction matrices value anisotropy is carried out via matrix fusion procedure.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum symmetries of face models and the double triangle algebra

Symmetries of trigonometric integrable two dimensional statistical face models are considered. The corresponding symmetry operators on the Hilbert space of states of the quantum version of these models define a weak *-Hopf algebra isomorphic to the Ocneanu double triangle algebra. R. TRINCHERO 1

متن کامل

The Q-onsager Algebra

where β = q+q and δ = −(q − q) 2 . (TD) can be regarded as a q-analogue of the DolanGrady relations and we call A the q-Onsager algebra. We classify the finite-dimensional irreducible representations of A. All such representations are explicitly constructed via embeddings of A into the Uq(sl2)-loop algebra. As an application, tridiagonal pairs of qRacah type over C are classified in the case wh...

متن کامل

Hidden symmetries in one-dimensional quantum Hamiltonians

We construct a Heisenberg-like algebra for the one dimensional infinite square-well potential in quantum mechanics. The numbertype and ladder operators are realized in terms of physical operators of the system as in the harmonic oscillator algebra. These physical operators are obtained with the help of variables used in a recently developed non commutative differential calculus. This “square-we...

متن کامل

Hidden Symmetries of Stochastic Models

In the matrix product states approach to n species diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra determined by the dynamics of the process. The quadratic algebra defines a noncommutative space with a SUq(n) quantum group action as its symmetry. Boundary processes amount to the appearance of parameter depend...

متن کامل

Duality and hidden symmetries in interacting particle systems

In the context of Markov processes, both in discrete and continuous setting, we show a general relation between duality functions and symmetries of the generator. If the generator can be written in the form of a Hamiltonian of a quantum spin system, then the “hidden” symmetries are easily derived. We illustrate our approach in processes of symmetric exclusion type, in which the symmetry is of S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SciPost physics

سال: 2021

ISSN: ['2542-4653']

DOI: https://doi.org/10.21468/scipostphys.11.3.066